Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 851(Pt 1): 158015, 2022 Dec 10.
Article in English | MEDLINE | ID: mdl-35970463

ABSTRACT

Archaeological burial environments are useful archives to investigate the long-term trends and the behaviour of mercury. In order to understand the relationship between mercury, skeletons and soil, we applied Partial Least Squares - Structural Equation Modelling (PLS-SEM) to a detailed, multisampling (n = 73 bone samples +37 soil samples) design of two archaeological graves dating to the 6th to 7th centuries CE (A Lanzada site, NW Spain). Mercury content was assessed using a DMA-80, and data about bone structure and the grave soil/sediments were obtained using FTIR-ATR spectroscopy. The theoretical model is supported by proxies of bone structure, grave soil/sediments, and location of the bone within the skeleton. The general model explained 61 % of mercury variance. Additionally, Partial Least Square - Prediction Oriented Segmentation (PLS-POS) was also used to check for segmentation in the dataset. POS revealed two group of samples depending on the bone phase (hydroxyapatite or collagen) controlling the Hg content, and the corresponding models explained 86 % and 76 % of Hg variance, respectively. The results suggest that mercury behaviour in the graves is complex, and that mercury concentrations were influenced by i) the ante-mortem status of the bone matrix, related to the weight of each bone phase; ii) post-mortem evolution of bone crystallinity, where bone loses mercury with increasing alteration; and iii) the proximity of the skeletal pieces to mercury target organs, as decomposition and collapse of the thoracic and abdominal soft tissues causes a secondary mercury enrichment in bones from the body trunk during early post-mortem. Skeletons provide a source of mercury to the soil whereas soil/sediments contribute little to skeletal mercury content.


Subject(s)
Mercury , Soil Pollutants , Body Remains/chemistry , Collagen , Humans , Hydroxyapatites , Latent Class Analysis , Mercury/analysis , Soil/chemistry , Soil Pollutants/analysis
2.
Genes (Basel) ; 12(11)2021 10 28.
Article in English | MEDLINE | ID: mdl-34828329

ABSTRACT

The identification of human remains is challenging mostly due to the bad condition of the remains and the available background information that is sometimes limited. The current case report is related to the identification of an unknown soldier from the Estonian War of Independence (1918-1920). The case includes an anthropological study of the remains, examinations of documents found with the exhumed remains, and kinship estimations based on archival documents, and DNA analyses. As the preliminary data pointed to remains of male origin, Y-chromosomal STR (short tandem repeat) analyses of 22 Y-STR loci were used to analyze the exhumed teeth. Reference samples from individuals from two paternal lineages were collected based on archival documents. Y-chromosomal STR results for the tooth samples were consistent with a patrilineal relationship to only one reference sample out of two proposed paternal lineages. Based on the provided pedigrees in the consistent case, the Y-STR results are approximately four million times more likely if the tooth sample originated from an individual related along the paternal line to the matching reference sample, than if the tooth sample originated from another person in the general population. Special considerations have to be met when limited evidence is available.


Subject(s)
Chromosomes, Human, Y/genetics , Microsatellite Repeats , Military Personnel/history , Tooth/chemistry , Archives , Armed Conflicts/history , Body Remains/chemistry , Estonia , Forensic Anthropology , History, 20th Century , Humans , Male , Pedigree
3.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Article in English | MEDLINE | ID: mdl-34845028

ABSTRACT

The Lake Titicaca basin was one of the major centers for cultural development in the ancient world. This lacustrine environment is unique in the high, dry Andean altiplano, and its aquatic and terrestrial resources are thought to have contributed to the florescence of complex societies in this region. Nevertheless, it remains unclear to what extent local aquatic resources, particularly fish, and the introduced crop, maize, which can be grown in regions along the lakeshores, contributed to facilitating sustained food production and population growth, which underpinned increasing social political complexity starting in the Formative Period (1400 BCE to 500 CE) and culminating with the Tiwanaku state (500 to 1100 CE). Here, we present direct dietary evidence from stable isotope analysis of human skeletal remains spanning over two millennia, together with faunal and floral reference materials, to reconstruct foodways and ecological interactions in southern Lake Titicaca over time. Bulk stable isotope analysis, coupled with compound-specific amino acid stable isotope analysis, allows better discrimination between resources consumed across aquatic and terrestrial environments. Together, this evidence demonstrates that human diets predominantly relied on C3 plants, particularly quinoa and tubers, along with terrestrial animals, notably domestic camelids. Surprisingly, fish were not a significant source of animal protein, but a slight increase in C4 plant consumption verifies the increasing importance of maize in the Middle Horizon. These results underscore the primary role of local terrestrial food resources in securing a nutritious diet that allowed for sustained population growth, even in the face of documented climate and political change across these periods.


Subject(s)
Agriculture/trends , Diet/trends , Social Conditions/trends , Agriculture/history , Animals , Anthropology, Physical , Archaeology/methods , Body Remains/chemistry , Bolivia/ethnology , Bone and Bones/chemistry , Camelids, New World , Carbon Isotopes/analysis , Chenopodium quinoa , Food , History, Ancient , History, Medieval , Humans , Lakes , Nitrogen Isotopes/analysis , Peru/ethnology , Plant Tubers , Social Conditions/history , Socioeconomic Factors/history , Solanum tuberosum
4.
PLoS One ; 16(10): e0257199, 2021.
Article in English | MEDLINE | ID: mdl-34644308

ABSTRACT

Cremation is a complex mortuary practice, involving a number of activities of the living towards the dead before, during, and after the destruction of the bodily soft tissues by fire. The limiting information concerning these behavioral patterns obtained from the pyre remains and/or cremation deposits prevents the reconstruction of the handling of the corpse during the burning process. This pioneering study tries to determine the initial positioning of the corpse in the pyre and assess whether the deceased was wearing closed leather shoes during cremation through isotopic (δ13C, δ18O) and infrared (ATR-FTIR) analyses of experimentally burnt pig remains, used as a proxy for humans. The results obtained show that both the position of feet on or within the pyre and the presence of footwears may moderately-to-highly influence the oxygen isotope ratios of bone apatite carbonates and the cyanamide content of calcined bone in certain situations. By forming a protective layer, shoes appear to temporarily delay the burning of the underlying pig tissues and to increase the heat-shielding effect of the soft tissues protecting the bone mineral fraction. In such case, bioapatite bone carbonates exchange oxygen with a relatively more 18O-depleted atmosphere (due to the influence of lignin-derived oxygen rather than cellulose-derived oxygen), resulting in more pronounced decrease in the δ18Ocarb values during burning of the shoed feet vs. unshoed feet. The shift observed here was as high as 2.5‰. A concomitant isotopic effect of the initial location of the feet in the pyres was also observed, resulting in a top-to-bottom decrease difference in the δ18Ocarb values of shoed feet of about 1.4‰ between each deposition level tested. Finally, the presence of cyanamide (CN/P ≥ 0.02) seems to be indicative of closed footwear since the latter creates favorable conditions for its incorporation into bone apatite.


Subject(s)
Cremation , Animals , Body Remains/chemistry , Bone and Bones/chemistry , Cadaver , Carbon Isotopes/analysis , Humans , Oxygen Isotopes/analysis , Shoes , Spectroscopy, Fourier Transform Infrared , Swine
5.
Sci Rep ; 11(1): 20958, 2021 10 25.
Article in English | MEDLINE | ID: mdl-34697324

ABSTRACT

Vitamin D deficiency has hugely impacted the health of past societies. Its identification in skeletal remains provides insights into the daily activities, cultural habits, and the disease load of past populations. However, up till now, this approach remained impossible in cremated bones, because temperatures reached during cremations destroyed all macroscopic evidence of vitamin D deficiency. This precluded the analyses of a large fraction of the archaeological record, as cremation was an important burial ritual from the Late Neolithic until the Early Medieval period in Europe. Here, the identification of interglobular dentine (IGD), a dental mineralisation defect attributed to vitamin D deficiency, in experimentally burnt teeth, demonstrates this deficiency to be observable in human teeth burned to temperatures as high as 900 °C. In most cases, it becomes even possible to assess the ages-of-occurrence as well as the severity of the IGD and possibly vitamin D deficiency intensity. This study represents a major step forward in the fields of biological anthropology, archaeology, and palaeopathology by opening up a variety of new possibilities for the study of health and activities related to sunlight exposure of numerous past populations that practiced cremation as their funerary ritual.


Subject(s)
Dentin/pathology , Tooth/chemistry , Vitamin D Deficiency/diagnosis , Archaeology , Body Remains/chemistry , Cremation , Europe , Humans , Paleopathology , Tooth/pathology , Vitamin D Deficiency/pathology
6.
Forensic Sci Int ; 327: 110994, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34536754

ABSTRACT

Genetic identification of a Slovenian prewar elite couple killed in 1944 was performed by typing autosomal and Y-chromosomal STRs, and phenotypic HIrisPlex SNPs for hair and eye color prediction were analyzed for the female skeleton using next-generation sequencing (NGS) technology. The clandestine grave containing the couple's skeletal remains was found in 2015 and only the partial remains were found. Living distant relatives could be found only for the male victim. Because of a lack of comparative reference samples, it was not possible to identify the female victim through autosomal and mitochondrial DNA typing. However, the possibility of comparison of eye and hair color with a painting exhibited in the City Museum of Ljubljana by the prominent Slovenian painter Ivana Kobilca existed. Nuclear DNA obtained from the samples was quantified using the PowerQuant System, and then STR typing was carried out with different autosomal and Y-STR kits. From 0.09-9.36 ng DNA/g of powder was obtained from teeth and bones analyzed. Complete autosomal and Y-STR profiles made it possible to identify the male skeleton via comparison with two nephews. For the female victim, predicted eye and hair color was compared to colors on the painting. Kobilca's painting confirms the genetically predicted eye and hair color. After more than seventy years, the skeletal remains of the couple were handed over to their relatives, who buried the victims with dignity in a family grave.


Subject(s)
DNA Fingerprinting/methods , Eye Color/genetics , Forensic Anthropology , Hair Color/genetics , High-Throughput Nucleotide Sequencing , Sequence Analysis, DNA , Body Remains/chemistry , Bone and Bones/chemistry , DNA/analysis , Female , Humans , Male , Portraits as Topic , Slovenia , Spouses , Tooth/chemistry , World War II
7.
Genome Biol ; 22(1): 200, 2021 08 06.
Article in English | MEDLINE | ID: mdl-34353344

ABSTRACT

Six million Jews were killed by Nazi Germany and its collaborators during World War II. Archaeological excavations in the area of the death camp in Sobibór, Poland, revealed ten sets of human skeletal remains presumptively assigned to Polish victims of the totalitarian regimes. However, their genetic analyses indicate that the remains are of Ashkenazi Jews murdered as part of the mass extermination of European Jews by the Nazi regime and not of otherwise hypothesised non-Jewish partisan combatants. In accordance with traditional Jewish rite, the remains were reburied in the presence of a Rabbi at the place of their discovery.


Subject(s)
Concentration Camps/history , DNA, Mitochondrial/genetics , Holocaust/history , Jews/genetics , National Socialism/history , Phylogeography/history , Body Remains/chemistry , DNA, Mitochondrial/classification , Genetics, Population/history , Haplotypes , History, 20th Century , Humans , Jews/history , Male , Poland , World War II
8.
PLoS One ; 16(7): e0254360, 2021.
Article in English | MEDLINE | ID: mdl-34319991

ABSTRACT

In this study, we present osteological and strontium isotope data of 29 individuals (26 cremations and 3 inhumations) from Szigetszentmiklós-Ürgehegy, one of the largest Middle Bronze Age cemeteries in Hungary. The site is located in the northern part of the Csepel Island (a few kilometres south of Budapest) and was in use between c. 2150 and 1500 BC, a period that saw the rise, the apogee, and, ultimately, the collapse of the Vatya culture in the plains of Central Hungary. The main aim of our study was to identify variation in mobility patterns among individuals of different sex/age/social status and among individuals treated with different burial rites using strontium isotope analysis. Changes in funerary rituals in Hungary have traditionally been associated with the crises of the tell cultures and the introgression of newcomers from the area of the Tumulus Culture in Central Europe around 1500 BC. Our results show only slight discrepancies between inhumations and cremations, as well as differences between adult males and females. The case of the richly furnished grave n. 241 is of particular interest. The urn contains the cremated bones of an adult woman and two 7 to 8-month-old foetuses, as well as remarkably prestigious goods. Using 87Sr/86Sr analysis of different dental and skeletal remains, which form in different life stages, we were able to reconstruct the potential movements of this high-status woman over almost her entire lifetime, from birth to her final days. Our study confirms the informative potential of strontium isotopes analyses performed on different cremated tissues. From a more general, historical perspective, our results reinforce the idea that exogamic practices were common in Bronze Age Central Europe and that kinship ties among high-rank individuals were probably functional in establishing or strengthening interconnections, alliances, and economic partnerships.


Subject(s)
Burial/history , Body Remains/chemistry , Dental Enamel/chemistry , Female , History, Ancient , Humans , Hungary , Male , Social Class , Strontium Isotopes/analysis
9.
Int J Legal Med ; 135(6): 2385-2394, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34173849

ABSTRACT

The identification of antemortem and postmortem fractures is a critical and challenging task for forensic researchers. Based on our preliminary studies, we explored whether the combination of Fourier transform infrared spectroscopy (FTIR) and chemometrics can identify antemortem and postmortem fractures in complex environments. The impacts of the four environments on the bone spectrum were analyzed by principal component analysis (PCA). It was found that the bone degradation rate in the submerged and ground surface (GS) environments was higher than that in the buried and constant temperature and moisture (CTM) environments. Additionally, the bone degradation rate in buried environment higher than that in the CTM environment. The average spectrum, PCA and partial least squares discriminant analysis (PLS-DA) results all revealed that there were significant differences between the antemortem fracture and the remaining three groups in a complex environment. Compared with the antemortem fracture, the antemortem fracture control (AFC) and postmortem fracture control (PFC) tended to be more similar to the postmortem fracture. According to the loading plot, amide I and amide II were the main components that contributed to the identification of the antemortem fracture, AFC, postmortem fracture, and PFC. Finally, we established a differential model for the antemortem and postmortem fractures (an accuracy of 96.9%), and a differentiation model for the antemortem fracture, AFC, postmortem fracture, and PFC (an accuracy of 87.5%). In conclusion, FTIR spectroscopy is a reliable tool for the identification of antemortem and postmortem fractures in complex environments.


Subject(s)
Environment , Models, Theoretical , Tibia/chemistry , Tibial Fractures , Animals , Body Remains/chemistry , Male , Models, Animal , Postmortem Changes , Principal Component Analysis , Rabbits , Spectroscopy, Fourier Transform Infrared
10.
Int J Legal Med ; 135(5): 1695-1707, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34031722

ABSTRACT

Freezing bone samples to preserve their biomolecular properties for various analyses at a later time is a common practice. Storage temperature and freeze-thaw cycles are well-known factors affecting degradation of molecules in the bone, whereas less is known about the form in which the tissue is most stable. In general, as little intervention as possible is advised before storage. In the case of DNA analyses, homogenization of the bone shortly before DNA extraction is recommended. Because recent research on the DNA yield from frozen bone fragments and frozen bone powder indicates better DNA preservation in the latter, the aim of the study presented here was to investigate and compare the chemical composition of both types of samples (fragments versus powder) using ATR-FTIR spectroscopy. Pairs of bone fragments and bone powder originating from the same femur of 57 individuals from a Second World War mass grave, stored in a freezer at - 20 °C for 10 years, were analyzed. Prior to analysis, the stored fragments were ground into powder, whereas the stored powder was analyzed without any further preparation. Spectroscopic analysis was performed using ATR-FTIR spectroscopy. The spectra obtained were processed and analyzed to determine and compare the chemical composition of both types of samples. The results show that frozen powdered samples have significantly better-preserved organic matter and lower concentrations of B-type carbonates, but higher concentrations of A-type carbonates and stoichiometric apatite. In addition, there are more differences in the samples with a low DNA degradation index and less in the samples with a high DNA degradation index. Because the results are inconsistent with the current understanding of bone preservation, additional research into optimal preparation and long-term storage of bone samples is necessary.


Subject(s)
Bone and Bones/chemistry , DNA/analysis , Femur/chemistry , Tissue Preservation/methods , Apatites/analysis , Body Remains/chemistry , Carbonates/analysis , Collagen/analysis , DNA Degradation, Necrotic , Freezing , Humans , Male , Postmortem Changes , Refrigeration , Slovenia/ethnology , Spectroscopy, Fourier Transform Infrared , Time Factors , World War II
11.
Int J Legal Med ; 135(4): 1319-1327, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33880634

ABSTRACT

When decomposition of a recovered body is fairly advanced, identification based on common morphologic features is often impossible. In these cases, short tandem repeat (STR) marker genotyping has established itself as a convenient and reliable alternative. However, at very progressed stages of decomposition, postmortem tissue putrefaction processes can decrease DNA yields considerably. Hence, not all types of tissue are equally suitable for successful STR marker-based postmortem identification. Bone or dental material is often analysed in corpses with advanced decompositional changes. However, processing of these materials is very elaborate and time and resource consuming. We have therefore focused on the suitableness of various types of soft tissue swabs, where DNA extraction is easier and faster. By sampling 28 bodies at various stages of decomposition, we evaluated the suitability of different tissues for genotyping at varying degrees of physical decay. This was achieved by a systematic classification of the sampled bodies by morphological scoring and subsequent analysis of multiple tissue swabs of the aortic wall, urinary bladder wall, brain, liver, oral mucosa and skeletal muscle. In summary, we found variable degrees of suitability of different types of soft tissue swabs for DNA-based identification. Swabs of the aortic wall, the urinary bladder wall and brain tissue yielded the best results - in descending order - even at advanced levels of decay.


Subject(s)
Body Remains/chemistry , DNA/isolation & purification , Forensic Anthropology/methods , Aorta/chemistry , Brain Chemistry , DNA Degradation, Necrotic , DNA Fingerprinting/methods , Female , Humans , Liver/chemistry , Male , Microsatellite Repeats , Mouth Mucosa/chemistry , Muscle, Skeletal/chemistry , Postmortem Changes , Urinary Bladder/chemistry
12.
PLoS One ; 16(3): e0247569, 2021.
Article in English | MEDLINE | ID: mdl-33651827

ABSTRACT

We report here on stable carbon, nitrogen, and sulfur isotope values from bone collagen of human (n = 20) and faunal (n = 11) remains from the Early Neolithic site of Ganj Dareh, Iran, dating to ca. 10,100 cal. BP. Our focus explores how isotope values of human bone vary by age and sex, and evaluates dietary practices at this site. It also provides a baseline for future studies of subsistence in the early Holocene Central Zagros Mountains, from the site with the first evidence for human ovicaprid management in the Near East. Human remains include individuals of all age groups for dietary reconstruction, as well two Ottoman intrusive burials for temporal and cultural comparison. All analyzed individuals exhibited δ13C and δ15N values consistent with a diet based heavily on C3 terrestrial sources. There is no statistically significant difference between the isotopic compositions of the two sexes, though males appear to show larger variations compared to females. Interesting patterns in the isotopic compositions of the subadults suggested weaning children may be fed with supplements with distinctive δ13C values. Significant difference in sulfur isotope values between humans and fauna could be the earliest evidence of transhumance and could identify one older adult male as a possible transhumant shepherd. Both Ottoman individuals had distinctively different δ13C, δ15N, and δ34S values compared to the Neolithic individuals. This is the first large scale analysis of human stable isotopes from the eastern end of the early Holocene Fertile Crescent. It provides a baseline for future intersite exploration of stable isotopes and insight into the lifeways, health, and processes of neolithisation associated with the origins of goat domestication at Ganj Dareh and the surrounding Central Zagros.


Subject(s)
Body Remains/chemistry , Bone and Bones/chemistry , Carbon Isotopes/analysis , Collagen/analysis , Nitrogen Isotopes/analysis , Sulfur Isotopes/analysis , Adolescent , Adult , Animals , Anthropology, Physical , Child , Child, Preschool , Diet , Dogs , Feeding Behavior , Female , Foxes , Goats , History, Ancient , Humans , Infant , Infant, Newborn , Iran , Male , Middle Aged , Sheep , Weaning , Young Adult
13.
J Forensic Leg Med ; 78: 102109, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33596512

ABSTRACT

After death, the body begins decomposition, a process that starts with the breakdown of organic matter and typically leads to the complete degradation of a body. Such a process is highly affected by (micro and macro) environmental factors of intrinsic and extrinsic nature. Adipocere is a substance formed from the decomposition of adipose tissue and represents a disruption to the typical decomposition process. Such disruption causes decomposition to slow or arrest completely, placing a body into a state of preservation, and determines complications in the estimation of the time since death (Post-Mortem Interval, PMI). While several studies have been performed on the nature, the formation and the degradation of adipocere, there is still no reliable model to assess the PMI of a body exhibiting it. Case studies are an important source to aid pathologists and investigators during a case. This review presents a summary and an update on the knowledge surrounding the chemistry and the factors affecting adipocere formation and degradation, the timing and the distribution of adipocere throughout a body, and the techniques used to investigate it. Furthermore, a table of the most important case studies involving adipocere since 1950, several images and descriptions of recent cases and operational considerations for the best practice at the crime scene and autopsy are presented to be used as a reference to facilitate forensic professionals in adipocere cases.


Subject(s)
Body Composition , Body Remains/chemistry , Body Remains/microbiology , Forensic Pathology , Postmortem Changes , Adipose Tissue/chemistry , Adipose Tissue/microbiology , Animals , Environment , Humans , Insecta , Oxygen , Soil , Temperature , Water
14.
Sci Rep ; 11(1): 3650, 2021 02 11.
Article in English | MEDLINE | ID: mdl-33574393

ABSTRACT

Small organic molecules, lipids, proteins, and DNA fragments can remain stable over centuries. Powerful and sensitive chemical analysis can therefore be used to characterize ancient remains for classical archaeological studies. This bio-ecological dimension of archaeology can contribute knowledge about several aspects of ancient life, including social organization, daily habits, nutrition, and food storage. Faecal remains (i.e. coprolites) are particularly interesting in this regard, with scientists seeking to identify new faecal markers. Here, we report the analysis of faecal samples from modern-day humans and faecal samples from a discharge pit on the site of the ruins of ancient Pompeii. We propose that bile acids and their gut microbiota oxo-metabolites are the most specific steroid markers for detecting faecal inputs. This is due to their extreme chemical stability and their exclusive occurrence in vertebrate faeces, compared to other ubiquitous sterols and steroids.


Subject(s)
Bile Acids and Salts/isolation & purification , Body Remains/chemistry , Feces/chemistry , Lipids/chemistry , Archaeology , Bile Acids and Salts/chemistry , DNA/chemistry , DNA, Ancient/chemistry , Humans , Metabolome/genetics , Proteins/chemistry
15.
Sci Rep ; 11(1): 1361, 2021 01 14.
Article in English | MEDLINE | ID: mdl-33446708

ABSTRACT

Complementary optical and neutron-based vibrational spectroscopy techniques (Infrared, Raman and inelastic neutron scattering) were applied to the study of human bones (femur and humerus) burned simultaneously under either aerobic or anaerobic conditions, in a wide range of temperatures (400 to 1000 °C). This is the first INS study of human skeletal remains heated in an oxygen-deprived atmosphere. Clear differences were observed between both types of samples, namely the absence of hydroxyapatite's OH vibrational bands in bone burned anaerobically (in unsealed containers), coupled to the presence of cyanamide (NCNH2) and portlandite (Ca(OH)2) in these reductive conditions. These results are expected to allow a better understanding of the heat effect on bone´s constituents in distinct environmental settings, thus contributing for an accurate characterisation of both forensic and archaeological human skeletal remains found in distinct scenarios regarding oxygen availability.


Subject(s)
Body Remains/chemistry , Femur/chemistry , Hot Temperature , Humerus/chemistry , Humans , Spectrum Analysis, Raman
16.
Int J Legal Med ; 135(2): 457-463, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33386979

ABSTRACT

In decomposed or skeletonized bodies, conventional matrices used in forensic toxicology may no longer be available for analysis. The aim of this paper was to test the survival and detection of toxicological substances in dry bone samples with over 23 years of post-mortem interval. In this perspective, bone samples from the cranium, ribs, and vertebrae of seven skeletons from the CAL Milano Cemetery Skeletal Collection, buried for over 23 years, fully decomposed and altered by taphonomic factors were selected based on their ante-mortem data, which included verified or suspected drug addictions or overdose. Qualitative and quantitative analyses were performed with Dionex™ ASE™ 350 Accelerated Solvent Extractor and Q-Exactive Orbitrap-mass spectrometry with a HPLC system. Positive results were obtained in six of the seven cases, and different psychoactive drugs (and in some cases their active metabolites) were detected, including analgesic (two opioids: methadone and buprenorphine) and anxiolytic drugs (benzodiazepines, in particular delorazepam, diazepam, nordiazepam, and lorazepam), a cannabinoid metabolite (THCCOOH) as well as metabolites of stimulants (benzoylecgonine and MDA). Consequently, this research shows that toxicological substances may be found in bone tissue after over 23 years of post-mortem interval.


Subject(s)
Body Remains/chemistry , Bone and Bones/chemistry , Psychotropic Drugs/analysis , Substance Abuse Detection/methods , Female , Humans , Italy , Male , Pilot Projects , Time Factors
17.
Int J Legal Med ; 135(3): 1005-1014, 2021 May.
Article in English | MEDLINE | ID: mdl-33410923

ABSTRACT

The attraction and colonization of vertebrate remains by carrion-associated arthropods are processes largely governed by olfaction. As remains decompose, they emit a bouquet of volatile organic compounds (VOCs), which in part originate from endogenous and exogenous microbes surrounding the carcass or from the carcass itself. The composition and concentration of VOCs are influenced by the presence and abundance of microbial species and arthropods. Blowfly species, such as Cochliomyia macellaria, play a critical role in nutrient recycling and the decomposition process of carrion. Gas chromatography-mass spectroscopy analysis was used to identify and classify volatile emissions from insect-colonized (with C. macellaria) and uncolonized rat carcasses, as well as a standard Gainesville diet, over a 10-day period. There were significant differences in composition and abundance of compounds present in each treatment, with significant effects of time, and different compound composition between treatments. Notable indicator compounds included, but were not limited to, indole, dimethyl disulfide, and dimethyl trisulfide. A high compound richness, and a low compound diversity, was detected over the 10-day period. The indicator compounds detected across all treatments were found to be of microbial origin, highlighting the importance of microbes in decomposition processes and arthropod attraction to carrion. This study also discusses the significant impact of necrophagous arthropods to the VOC profile of carrion. The results of this study provide insight into the changes in decomposition VOCs over time, with an explanation of compounds in high concentration known to be attractive to carrion-colonizing arthropods.


Subject(s)
Body Remains/chemistry , Calliphoridae , Forensic Entomology , Volatile Organic Compounds/analysis , Animals , Body Remains/microbiology , Gas Chromatography-Mass Spectrometry , Microbiota , Postmortem Changes , Rats , Volatile Organic Compounds/classification
18.
PLoS One ; 15(11): e0240930, 2020.
Article in English | MEDLINE | ID: mdl-33147297

ABSTRACT

We conducted a meta-analysis of published carbon and nitrogen isotope data from archaeological human skeletal remains (n = 2448) from 128 sites cross China in order to investigate broad spatial and temporal patterns in the formation of staple cuisines. Between 6000-5000 cal BC we found evidence for an already distinct north versus south divide in the use of main crop staples (namely millet vs. a broad spectrum of C3 plant based diet including rice) that became more pronounced between 5000-2000 cal BC. We infer that this pattern can be understood as a difference in the spectrum of subsistence activities employed in the Loess Plateau and the Yangtze-Huai regions, which can be partly explained by differences in environmental conditions. We argue that regional differentiation in dietary tradition are not driven by differences in the conventional "stages" of shifting modes of subsistence (hunting-foraging-pastoralism-farming), but rather by myriad subsistence choices that combined and discarded modes in a number of innovative ways over thousands of years. The introduction of wheat and barley from southwestern Asia after 2000 cal BC resulted in the development of an additional east to west gradient in the degree of incorporation of the different staple products into human diets. Wheat and barley were rapidly adopted as staple foods in the Continental Interior contra the very gradual pace of adoption of these western crops in the Loess Plateau. While environmental and social factors likely contributed to their slow adoption, we explored local cooking practice as a third explanation; wheat and barley may have been more readily folded into grinding-and-baking cooking traditions than into steaming-and-boiling traditions. Changes in these culinary practices may have begun in the female sector of society.


Subject(s)
Archaeology/statistics & numerical data , Cooking/history , Crops, Agricultural/history , Food/history , Body Remains/chemistry , Carbon Isotopes/analysis , China , Feeding Behavior , Female , History, Ancient , Humans , Male , Nitrogen Isotopes/analysis , Sex Factors , Skeleton/chemistry , Spatio-Temporal Analysis
19.
Electrophoresis ; 41(18-19): 1600-1605, 2020 10.
Article in English | MEDLINE | ID: mdl-32725901

ABSTRACT

DNA analysis of degraded samples and low-copy number DNA derived from skeletal remains, one of the most challenging forensic tasks, is common in disaster victim identification and genetic analysis of historical materials. Massively parallel sequencing (MPS) is a useful technique for STR analysis that enables the sequencing of smaller amplicons compared with conventional capillary electrophoresis (CE), which is valuable for the analysis of degraded DNA. In this study, 92 samples of human skeletal remains (70+ years postmortem) were tested using an in-house MPS-STR system designed for the analysis of degraded DNA. Multiple intrinsic factors of DNA from skeletal remains that affect STR typing were assessed. The recovery of STR alleles was influenced more by DNA input amount for amplification rather than DNA degradation, which may be attributed from the high quantity and quality of libraries prepared for MPS run. In addition, the higher success rate of STR typing was achieved using the MPS-STR system compared with a commercial CE-STR system by providing smaller sized fragments for amplification. The results can provide constructive information for the analysis of degraded sample, and this MPS-STR system will contribute in forensic application with regard to skeletal remain sample investigation.


Subject(s)
DNA/genetics , Forensic Genetics/methods , High-Throughput Nucleotide Sequencing/methods , Microsatellite Repeats/genetics , Body Remains/chemistry , DNA/analysis , DNA/isolation & purification , Humans , Multiplex Polymerase Chain Reaction , Sequence Analysis, DNA
20.
PLoS One ; 15(7): e0235005, 2020.
Article in English | MEDLINE | ID: mdl-32628680

ABSTRACT

Archaeology has yet to capitalise on the opportunities offered by bioarchaeological approaches to examine the impact of the 11th-century AD Norman Conquest of England. This study utilises an integrated multiproxy analytical approach to identify and explain changes and continuities in diet and foodways between the 10th and 13th centuries in the city of Oxford, UK. The integration of organic residue analysis of ceramics, carbon (δ13C) and nitrogen (δ15N) isotope analysis of human and animal bones, incremental analysis of δ13C and δ15N from human tooth dentine and palaeopathological analysis of human skeletal remains has revealed a broad pattern of increasing intensification and marketisation across various areas of economic practice, with a much lesser and more short-term impact of the Conquest on everyday lifestyles than is suggested by documentary sources. Nonetheless, isotope data indicate short-term periods of instability, particularly food insecurity, did impact individuals. Evidence of preferences for certain foodstuffs and cooking techniques documented among the elite classes were also observed among lower-status townspeople, suggesting that Anglo-Norman fashions could be adopted across the social spectrum. This study demonstrates the potential for future archaeological research to generate more nuanced understanding of the cultural impact of the Norman Conquest of England, while showcasing a method which can be used to elucidate the undocumented, everyday implications of other large-scale political events on non-elites.


Subject(s)
Body Remains/chemistry , Cooking/history , Diet/history , Social Class/history , Animals , Archaeology/methods , Bone and Bones/chemistry , Carbon Isotopes/analysis , Cattle , Ceramics/analysis , Female , Goats , History, Medieval , Humans , Male , Nitrogen Isotopes/analysis , Sheep , Swine , Tooth/chemistry , United Kingdom
SELECTION OF CITATIONS
SEARCH DETAIL
...